

DAT/EM Systems International
2014 Merrill Field Drive
Anchorage, Alaska 99501 USA
Phone (907) 522-3681
Toll-free U.S. and Canada 1 (800) 770-3681
support@datem.com, www.datem.com

How to Use Regular Expressions in
the Automatic Model Generator in

Summit Evolution version 8.0
February 24, 2021

Page 1 of 9

Page 1 of 9

Starting in DAT/EM Summit Evolution version 8.0, there is a new optional filter to select only certain
images to be used for automatic model generation. The filter contains “Regular Expressions”, which are
a set of searching standards. If you are not familiar with using Regular Expressions, use this quick tutorial
to help you get started.

Regular Expressions can be very detailed and they have many options. Here, we will get you started with
using simple expressions in Summit’s model generator to help filter images by characters or strings in
their file names. We will also provide links to resources so you can learn about more Regular Expression
components.

The new filter is here: Summit > Project Window > Models tab > > Image Selection area > Select:

Things to keep in mind:

 The wildcard * can be used in Regular Expressions, but it does not work quite the same way that
you might expect based on its use in other applications. The proper way to use it is .* and this is
shown in the examples below.

Page 2 of 9

 Summit is using a Boost::regex_search that will allow a partial match. Some other types of
Regular Expressions require an exact match, but partial matches will work better for selecting
images by parts of their file names.

 Refer to https://www.autohotkey.com/docs/misc/RegEx-QuickRef.htm AND

https://en.wikipedia.org/wiki/Regular_expression for how Regular Expressions normally work.
Since we allow partial matches, our matches will work slightly differently from what might be
expected.

Let’s say we have a list of images from a multi-head (multi-directional) camera such as the Vexcel Osprey
4.1. There may be hundreds of images from each camera direction in a project, but our example has a
small subset:

0022-RGB-Left.smti
0023-RGB-Left.smti
0056-RGB-Right.smti
0057-RGB-Right.smti
0124-RGB-Fwd.smti
0125-RGB-Fwd.smti
0132-RGB-Color.smti
0133-RGB-Color.smti
0140-RGB-Bwd.smti
0141-RGB-Bwd.smti

0166-RGB-Fwd.smti
0167-RGB-Fwd.smti
0174-RGB-Color.smti
0175-RGB-Color.smti
0182-RGB-Bwd.smti
0183-RGB-Bwd.smti
0250-RGB-Right.smti
0251-RGB-Right.smti
0284-RGB-Left.smti
0285-RGB-Left.smti

We want to make models only from matching camera directions, as indicated by the highlight colors
above.

You might have something different, such as multiple years of imagery that used a different naming
convention. If there is some unique part of the file name string that you can detect by reading them,
then you can build a Regular Expression that will find just those images.

The following are some example Regular Expressions that will help find these image sets using partial
matches:

Page 3 of 9

Left

This works to find the images with ‘Left’ somewhere in
their name.

‘Left’ works, because we allowed partial matches. We
found a piece of the model name that matches the
expression in four of the images in our example, and
they are now selected and highlighted in gray.

If we select OK now, only the highlighted images will be
used for model generation. Only the highlighted images
will be sent on to the next set of filters, which appear
back in the main model generation dialog, such as the %
overlap and kappa filters.

Page 4 of 9

028.*Left

Notice that fewer items are now selected than when you
used simply ‘Left’. If we break down this expression, the
different parts do this:

028 : This tells it to start by matching exactly the
characters ‘028’.

.* : Next take any number of characters and match
to them. You can also think of this as skipping any
number of any characters. (Note the difference
between the more common use of the * wildcard in
other applications. In Regular Expressions, * can’t be
used by itself. It must be listed as .* in the
expression.)

Left : This tells it to match the characters ‘Left’
anywhere in the remaining part of the string.

Now only two of the left-facing camera images are
selected, because the other two that contained ‘Left’
don’t contain ‘028’ at the beginning of their name.

Page 5 of 9

.*

We include this as an example to further show the
effects of the .* wildcard. If you use .* as the entire
regular expression, it will find all images.

This obviously won’t be useful to you by itself, but it can
be useful when combined with other expression
components, such as the example immediately above.

Page 6 of 9

.
(1 dot)
May be repeated, such as 6 of them:

……
(6 dots)

Each dot represents exactly 1 character, which may be
any character. For example, 6 dots …… means to allow
any characters for exactly 6 character positions.

Now let’s turn this into a more useful expression:

………Right

(9 dots)
This starts with exactly 9 dots, so it will allow any
characters for the first 9 positions, but then ‘Right’ must
appear somewhere in the rest of the string. ‘Right’ may
start on the 10th character or anywhere after that.

In this case, it gives the same result as if we had entered
only Right by itself; however, there could be cases of
multiple combined image sets where the dots help you
exclude images with a common string in different parts
of their file names. For example, if another image set
had ‘Right’ only at the beginning of the string, it would
exclude those images, because it skipped the first 9
character positions.

Page 7 of 9

…Right
(3 dots)

Why does this give exactly the same results as the
example above that used 9 dots? It’s because we
allowed partial matches.

Really what matched was the part of the string past the
first 3 characters. So, it found ‘Right’ somewhere in ‘6-
RGB-Right’, ‘7-RGB-Right’, ‘0-RGB-Right’, and ‘1-RGB-
Right’, having skipped the first 3 characters of each of
these file names.

When we used the 9 dots inRight , it was a much
more strict expression that meant ‘Right’ had to appear
somewhere starting in the 10th or higher character
positions.

If we had a file name that started with ‘Right’, such as
Right_07_23_1984.tif, then an expression starting with
5 dots, …..Right, would miss selecting this image. This is
because ‘Right’ doesn’t appear anywhere starting in the
6th or higher character positions. It’s searching for ‘Right’
in ‘_07_23_1984’ and doesn’t find it.

Page 8 of 9

…….…Right
(10 dots)

We purposely added too many dots just to show what
happens.

This time there are 10 dots. It doesn’t find anything,
because only ‘ight’ shows up in the 11th and higher part
of the string. ‘Right’ can’t be fully found in ‘ight’, so no
images are selected.

Page 9 of 9

...5.*[td]

Now we’re getting even more specific with a
combination of expression components.

This expression says, in order:

… : Match the first 3 and exactly 3 characters, which
can be anything. This can also be thought of as
skipping exactly 3 characters at the beginning.

5 : The 4th character must be a ‘5’. Note that there
are 3 images that have a ‘5’ in the 4th character, but
only 2 are selected, so something else in the
expression must have ruled out one of the images.

.* : Next take any number of characters and match
to them. You can also think of this as skipping any
number of characters.

[td] : The last character must be either a ‘t’ or a ‘d’.
This is the part of the expression that rules out the
image that has ‘5’ in the 4th character, but ends with
an ‘r’.

This is the first time we’ve introduced an expression
component such as [td]. You can learn more about how
to use the square brackets, [], and even more Regular
Expression components in these references:
https://www.autohotkey.com/docs/misc/RegEx-
QuickRef.htm
and https://en.wikipedia.org/wiki/Regular_expression

